Hollow Carbon Nanofibers with Inside-outside Decoration of Bi-metallic MOF Derived Ni-Fe Phosphides as Electrode Materials for Asymmetric Supercapacitors

[Display omitted] •Bi-metallic MOF-derived (Ni-Fe)-P-C@HCNFs and FePC@HCNFs are obtained as positive and negative electrodes of ASC.•Co-existence of redox-active bi-metallic phosphide at the inside and outside of HCNFs improves redox kinetics.•The (Ni-Fe)-P-C@HCNFs showed a high specific capacitance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-12, Vol.450, p.138363, Article 138363
Hauptverfasser: Chhetri, Kisan, Kim, Taewoo, Acharya, Debendra, Muthurasu, Alagan, Dahal, Bipeen, Bhattarai, Roshan Mangal, Lohani, Prakash Chandra, Pathak, Ishwor, Ji, Seongmin, Ko, Tae Hoon, Kim, Hak Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Bi-metallic MOF-derived (Ni-Fe)-P-C@HCNFs and FePC@HCNFs are obtained as positive and negative electrodes of ASC.•Co-existence of redox-active bi-metallic phosphide at the inside and outside of HCNFs improves redox kinetics.•The (Ni-Fe)-P-C@HCNFs showed a high specific capacitance of 1392 F g−1 at 1 A g−1.•As fabricated ASC device shows a maximum energy density of 62.7 W h kg−1 at 8.23 kW kg−1 of power density. Bi-metallic metal–organic framework (MOF) generated phosphides within and outside the hollow carbon nanofibers (HCNFs) show remarkable potential for energy storage owing to their improved conductivity and high specific capacitance. A novel approach is used to synthesize (Ni-Fe)-P-C on the outer and inner surfaces of HCNFs. The synthesized material's substantial electrochemical performance is owing to the co-existence of numerous Ni and Fe-based redox-active species with porous carbon and open channels from MOF-derived Carbon at HCNFs for fast electrolyte ions/electron diffusion. Consequently, the (Ni-Fe)-P-C@HCNFs electrode has a high specific capacitance of 1392 F g−1 at 1 A g-1 and good cycling stability, with capacitance retention of approximately 89 % at 25 A/g. Moreover, after 10,000 cycles, the asymmetric supercapacitor (ASC): (Ni-Fe)-P-C@HCNFs//FePC@HCNFs has an optimal energy density of 62.7 Wh kg−1 and a power density of 8238.2 W kg−1, with cycling stability of 92.4 percent at a high current density of 25 A g-1.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2022.138363