Using silver exchange to achieve high uptake and selectivity for propylene/propane separation in zeolite Y
[Display omitted] •A strategy leading to high propylene selectivity and uptake was introduced.•Following this rationale, we synthesised a silver-exchanged zeolite Y (Ag-Y).•Ag-Y showed enhanced propylene selectivity compared to its precursor Na-Y.•Ag-Y outperformed other adsorbents in terms of propy...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-10, Vol.446, p.137104, Article 137104 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•A strategy leading to high propylene selectivity and uptake was introduced.•Following this rationale, we synthesised a silver-exchanged zeolite Y (Ag-Y).•Ag-Y showed enhanced propylene selectivity compared to its precursor Na-Y.•Ag-Y outperformed other adsorbents in terms of propylene selectivity and uptake.•Pair distribution function analyses showed easily accessible Ag sites in the zeolite.
Adsorptive separation of propylene and propane, an important step of polypropylene production, is more energy-efficient than distillation. However, the challenge lies in the design of an adsorbent which exhibits both high selectivity and uptake. Herein, we hypothesise that enhancing the propylene affinity of the adsorption sites while keeping a suitable pore size can address this challenge. To do so, we performed silver exchange of a commercial zeolite Y, thereby making the adsorbent design easily scalable. We characterised the adsorbent using analytical, spectroscopic and imaging tools, tested its equilibrium and dynamic sorption properties using volumetric and gravimetric techniques and compared its performance to those of state-of-the-art adsorbents as well as other silver-functionalised adsorbents. The silver-exchanged zeolite Y (Ag-Y) exhibited one of the best selectivity vs uptake performances reported so far. Ag-Y also displayed fast adsorption kinetics and reversible propylene sorption, making it a promising new benchmark for propylene/propane separation. Synchrotron-based pair distribution function analyses identified the silver cations’ location which confirmed that the silver sites are easily accessible to the adsorbates. This aspect can, in part, explain the propylene/propane separation performance observed. The overall design strategy proposed here to enhance sorption site affinity and maintain pore size could be extended to other adsorbents and support the deployment of adsorption technology for propylene/propane separation. |
---|---|
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2022.137104 |