Cellulose nanocrystals–blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents

[Display omitted] •Cellulose nanocrystals-blended porous separator engineered.•Hydrophilic cellulose nanocrystals incorporated into hydrophobic polymer network.•High ionic conductivity & low H2 permeability achieved at low electrolyte contents.•Remarkable cell capability realized with 10 wt% KOH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-01, Vol.428, p.131149, Article 131149
Hauptverfasser: Lee, Jung Won, Lee, Jae Hun, Lee, ChangSoo, Cho, Hyun-Seok, Kim, MinJoong, Kim, Sang-Kyung, Joo, Jong Hoon, Cho, Won-Chul, Kim, Chang-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Cellulose nanocrystals-blended porous separator engineered.•Hydrophilic cellulose nanocrystals incorporated into hydrophobic polymer network.•High ionic conductivity & low H2 permeability achieved at low electrolyte contents.•Remarkable cell capability realized with 10 wt% KOH solution for 300 h. Alkaline water electrolysis (AWE) is a mature technology for producing hydrogen using variable renewable sources. AWE typically uses a concentrated electrolyte and a porous separator between the two electrodes to deliver ionic conductivity and to separate the released gases. The porous separator typically requires highly concentrated electrolytes (25~30 wt%) to provide high ionic conductivity. However, the circulation of the concentrated electrolyte in the electrolyzer block causes loss of Faraday efficiency and corrosion. Herein, we show that a cellulose nanocrystals (CNCs)-blended Zirconia/Polysulfone composite porous separator exhibits both low area resistance of 0.18 Ω cm2 and low hydrogen permeability of 4.7 × 10−12 mol bar−1 s−1 cm−1 at low electrolyte contents (10 wt% KOH solution). Meanwhile, a commercial Zirfon® separator exhibited poor performances of the high area resistance of 0.71 Ω cm2 and high hydrogen permeability of 305 × 10−12 mol bar−1 s−1 cm−1 under the same condition. The cell comprising the optimized composite separator displayed a remarkable capability of 1.83 V at 600 mA cm−2 with 10 wt% KOH solution for 300 h in a stable mode. Hydrophilic cellulose nanocrystals were successfully incorporated into the hydrophobic polymer network, resulting in lowering the area resistance and gas permeability of the separator. These results demonstrate that AWE equipped with (CNCs)-blended Zirconia/Polysulfone composite porous separators can achieve high performance using low concentration electrolytes, contributing to lifetime.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2021.131149