Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction

[Display omitted] •A kind of spatial distribution heterojunction based on g-C3N4 microtubes.•In situ growth of ZnIn2S4 nanosheets on g-C3N4 microtubes.•Microstructure of heterojunction greatly affects photocatalytic CO2 reduction.•Spatial distribution heterojunction is superior to bulk or 2D/2D hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2021-08, Vol.418, p.129476, Article 129476
Hauptverfasser: Chen, Kaihang, Wang, Xuanwei, Li, Qiuyun, Feng, Ya-Nan, Chen, Fei-Fei, Yu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •A kind of spatial distribution heterojunction based on g-C3N4 microtubes.•In situ growth of ZnIn2S4 nanosheets on g-C3N4 microtubes.•Microstructure of heterojunction greatly affects photocatalytic CO2 reduction.•Spatial distribution heterojunction is superior to bulk or 2D/2D heterojunction. The graphitic carbon nitride (g-C3N4) is regarded as a powerful support for constructing heterojunction. How to rationally design high-performance g-C3N4-based heterojunction remains a great challenge. In this work, a kind of spatial distribution heterojunction is prepared by in situ growing ZnIn2S4 (ZIS) nanosheets on g-C3N4 microtubes (T-CN). To highlight the advantage of such a structure design, g-C3N4 bulk (B-CN) and g-C3N4 nanosheets (S-CN) are also used as the supports to obtain B-CN/ZIS bulk heterojunction and S-CN/ZIS 2D/2D heterojunction, respectively. T-CN/ZIS spatial distribution heterojunction combines the hierarchical core/shell structure of B-CN/ZIS and ultrathin structure of S-CN/ZIS, which is much favorable for photocatalytic CO2 reduction. It is found that the gas yield from CO2 reduction is highest over T-CN/ZIS, which is 3.5 and 1.5 times higher than B-CN/ZIS and S-CN/ZIS. The experimental results manifest that the spatial distribution of ZIS nanosheets on T-CN induces stronger photoabsorption, faster interfacial charge transfer, and larger CO2 adsorption, all of which are responsible for the best catalytic activity. It is expected that this work will provide an instructive guideline for designing g-C3N4-based heterojunction.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2021.129476