Vacancy engineering and constructing built-in electric field in Z-scheme full-spectrum-Response 0D/3D BiOI/MoSe2 heterojunction modified PVDF membrane for PPCPs degradation and anti-biofouling
[Display omitted] •PVDF/MoSe2/BiOI photocatalytic composite membrane is prepared by ingenious method.•It builds pyroelectric-photothermal effect to enhance photocatalytic performance.•It exhibits full spectral response and excellent photothermal effect.•It improves the photogenerated charge separati...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2021-06, Vol.414, p.128867, Article 128867 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•PVDF/MoSe2/BiOI photocatalytic composite membrane is prepared by ingenious method.•It builds pyroelectric-photothermal effect to enhance photocatalytic performance.•It exhibits full spectral response and excellent photothermal effect.•It improves the photogenerated charge separation, carrier migration and lifetime.
Vacancy engineering and constructing a built-in electric field are effective strategies to enhance the photocatalytic performance of semiconductors. Herein, a novel Z-scheme photocatalyst 0D/3D-BiOI/MoSe2-heterojunction-modified polyvinylidene fluoride (PVDF) membrane is prepared by constructing a built-in electric field and implementing defect engineering. The 0D/3D BiOI/MoSe2 heterojunction not only has a wide light absorption range but also promotes the separation of photogenerated carriers through defect engineering and the interface with the built-in electric field. Constructing the built-in electric field greatly facilitates the scavenging of the photogenerated electrons on the surface of BiOI by MoSe2, thereby enhancing the overall photocatalytic activity of the composites. Furthermore, the heat-collecting photocatalytic composite membrane controls the reaction at the surface and interface. The membrane is composed of a unique pyroelectric substrate PVDF–hexafluoropropane, a hollow interior photothermal material MoSe2, and a representative photocatalyst BiOI. The enhanced photocatalytic efficiency is demonstrated by the degradation of tetracycline, which reaches 98% after 120 min. This all-in-one multifunctional porous membrane provides a simple and sustainable strategy for clean water production. |
---|---|
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2021.128867 |