Long persistent luminescence properties of NaBaScSi2O7: Tb3+ and it’s applications above room temperature

The temperature-dependent long persistent luminescence decay curves, temperature-dependent thermoluminescence curves, temperature-dependent long persistent luminescence brightness and temperature-dependent long persistent luminescence model diagram. [Display omitted] •NaBaScSi2O7 possesses stable cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2020-12, Vol.401, p.126119, Article 126119
Hauptverfasser: Liu, Zhichao, zhao, Lei, Yang, Xiuxia, Yang, Liuli, zhang, Hao, zeng, Wei, Yu, Xue, Qiu, Jianbei, Xu, Xuhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The temperature-dependent long persistent luminescence decay curves, temperature-dependent thermoluminescence curves, temperature-dependent long persistent luminescence brightness and temperature-dependent long persistent luminescence model diagram. [Display omitted] •NaBaScSi2O7 possesses stable crystal structure at above room temperature.•Tb3+ was introduced in NaBaScSi2O7 to generate feasible trap structure.•The LPL time of NaBaScSi2O7: Tb3+ reaches more than 12 h at 353 K.•NaBaScSi2O7: Tb3+ have potential application in tropical environment display. Thermal energy induces long persistent luminescent (LPL) at room temperature, however, the performance is deteriorated for an accelerated release of carriers once these LPL phosphors were employed in an ambient environment with higher temperature such as in vivo imaging, or display in tropical environment. In this work, we report that NaBaScSi2O7 possessing stable crystal structure at high temperature, with the introduction of Tb3+ ions acting as emitting and traps centers, exhibits an obvious LPL properties above room temperature. The LPL time reaches more than 12 h at 353 K, thanks to the feasible trap depth ensuring the slowly release of the captured carriers. Outstanding chemical and physical stability guarantees the developed LPL phosphor could be applied for display and biological imaging above room temperature.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2020.126119