Intrinsic kinetic model for oxidative dehydrogenation of ethane over MoVTeNb mixed metal oxides: A mechanistic approach

[Display omitted] •Discrimination of electrophilic and lattice oxygen by mathematical decoupling.•Acetate species represents key surface intermediate for carbon dioxide formation.•Predominant production of carbon monoxide from ethene decomposition.•Adequacy and significance of model parameter verifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Engineering Journal 2020-03, Vol.383, p.123195, Article 123195
Hauptverfasser: Donaubauer, Philipp J., Melzer, Daniel M., Wanninger, Klaus, Mestl, Gerhard, Sanchez-Sanchez, Maricruz, Lercher, Johannes A., Hinrichsen, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Discrimination of electrophilic and lattice oxygen by mathematical decoupling.•Acetate species represents key surface intermediate for carbon dioxide formation.•Predominant production of carbon monoxide from ethene decomposition.•Adequacy and significance of model parameter verified by statistical methods.•Sensitivity analyses reveal dependency of ethene formation on model parameters. An intrinsic kinetic model for the selective production of ethene via oxidative dehydrogenation of ethane over the M1 phase of MoVTeNb mixed metal oxides is presented. Formation of acetic acid, carbon monoxide and carbon dioxide has been incorporated using a holistic reaction mechanism. The proposed model is based on two different oxygen sites, namely, lattice oxygen causing carbon-hydrogen bond cleavage and electrophilic surface oxygen responsible for the formation of carbon-oxygen bonds. It is found that carbon dioxide exclusively originates from decarboxylation of acetate species, while ethene selectively reacts to CO. Consumption and formation of all species are well predicted by the proposed model. Sensitivity analyses demonstrate the strong impact of the initial carbon-hydrogen cleavage on the net ethene production rate. Moreover, regeneration of lattice oxygen sites is found to become rate-determining at oxygen-lean conditions.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2019.123195