Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase

•Lightweight & ultraporous CMC-g-poly(acrylic acid-co-acrylamide) sponges synthesis.•Application of hydrogel sponges for physical immobilization of a recombinant xylanase.•Improvement of efficiency, reusability and thermal stability of immobilized PersiXyn1.•3D polymeric spongy structures as ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2019-11, Vol.375, p.122022, Article 122022
Hauptverfasser: Ariaeenejad, Shohreh, Hosseini, Elnaz, Motamedi, Elaheh, Moosavi-Movahedi, Ali A., Salekdeh, Ghasem Hosseini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Lightweight & ultraporous CMC-g-poly(acrylic acid-co-acrylamide) sponges synthesis.•Application of hydrogel sponges for physical immobilization of a recombinant xylanase.•Improvement of efficiency, reusability and thermal stability of immobilized PersiXyn1.•3D polymeric spongy structures as versatile carriers for enzyme-polymer bio-conjugates.•Importance of electrostatic attractions in physical enzyme immobilization strategies. Enzyme immobilization onto supports could improve its specificity, storage stability, reusability, pH tolerance and thermal stability. Aiming to provide a proficient immobilization carrier for a recombinant xylanase (PersiXyn1), the high-performance 3D copolymeric network of carboxymethyl cellulose (CMC)-based hydrogel sponges were synthesized using in situ graft radical polymerization. While typical purified gel drying in a vacuum oven made CMC/Acrylate-Hydrogel, the freeze-drying of the resultant swelled Hydrogel containing different amounts of water, resulted in two samples of sponges (i.e., CMC/Acrylate-Sponge1 and CMC/Acrylate-Sponge2). The structural characteristics and water absorbency properties of all the as-prepared samples were evaluated. CMC/Acrylate-Sponge2 was selected for PersiXyn1 immobilization due to its homogeneous porous polymeric skeleton and maximum water absorbency (166.6 g/g) offering superb enzyme immobilization efficiency (100%). Moreover, presence of numerous oxygenated functionalities and cage-like characteristics in the CMC/Acrylate-Sponge2, led to effective electrostatic attractions between support and enzyme providing physically stabilized and reusable bio-conjugates which exhibited up to 60% recovered activity even after eight continuous reuse cycles. The results of kinetic studies indicated that the specific activities of free and immobilized PersiXyn1 were 4157 and 5508 µmol min−1 mg−1, respectively. Interestingly, CMC/Acrylate-Sponge2 support could noticeably broaden the temperature endurance ranges of immobilized PersiXyn1. While free enzyme could preserve only 10% of its maximum activity, the immobilized enzyme maintained 35% of its maximum activity after 60 min incubation at 60 °C. Lastly, CMC/Acrylate-Sponge2 support provided remarkable enzyme protection from denaturing, which caused shifting enzyme unfolding temperature from 71.5 to 78.0 °C, indicating the effectual shielding effects of polymeric support on PersiXyn1.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2019.122022