Vanadium- and manganese-based metal-organic frameworks for potential environmental and catalysis applications
Industrialization has significantly compromised air quality, environmental health, and human well-being. Therefore, it is highly necessary to develop efficient and cost-effective strategies to resolve the issue of environmental pollution while promoting sustainable energy production. Catalysts play...
Gespeichert in:
Veröffentlicht in: | Coordination chemistry reviews 2025-01, Vol.522, p.216231, Article 216231 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Industrialization has significantly compromised air quality, environmental health, and human well-being. Therefore, it is highly necessary to develop efficient and cost-effective strategies to resolve the issue of environmental pollution while promoting sustainable energy production. Catalysts play a crucial role in the synthesis and conversion of valuable chemicals by providing more active sites that accelerate catalytic reactions, leading to proper activity and selectivity. However, challenges such as catalyst stability, cost-effectiveness, high surface area, reusability, and low loading amount need to be addressed. In this regard, metal organic frameworks (MOFs) could be an intelligent choice due to their tunable structure through altering metal centers and organic ligands along with their structural flexibility, high specific surface area, and diversity. These porous materials have found extensive application in heterogeneous catalysis and environmental remediation thanks to their low cost, abundance in nature and feasible preparation routes. Among first-row transition metal-based MOFs like vanadium (V)- and manganese (Mn)-containing structures have gained popularity in environmental remediation and catalysis due to their different redox states, stability, cost-effectiveness. As limited number of review articles have addressed V and Mn-containing MOFs compared to other first-row transition metals like Ni, Co, Cu and Fe, this review aims at exploring recent advancements in the V- and Mn-based MOFs, their composites, and derivatives within heterogeneous catalysis, highlighting applications in oxidative fuel desulfurization, CO2 reduction, epoxidation, hydroxylation, oxidation of organic compounds, and environmental remediation, including the adsorption and elimination of organic dyes and CO2 capture and conversion. Also, the review emphasizes the structure-performance relationship, offering new insights for overcoming existing challenges and advancing the field.
[Display omitted]
•The first review reporting the advances in the field of V- and Mn-based MOFs toward environmental & catalysis applications.•Modifications to improve the performance of V- and Mn-MOFs are summarized.•Significance and advantages of V- and Mn-based MOFs are highlighted.•Relationship between structure and properties of V- and Mn-MOFs, their derivatives and composites are discussed.•The review can provide some new outlook towards development of other MOFs for environmental and catal |
---|---|
ISSN: | 0010-8545 |
DOI: | 10.1016/j.ccr.2024.216231 |