Exposure of bay scallop Argopecten irradians to micro-polystyrene: Bioaccumulation and toxicity

Marine microplastic pollution poses a threat to aquatic organisms, including bivalves. In this study, we investigated the accumulation of microplastics and their elicited antioxidant stress response in the bay scallop Argopecten irradians. Scallops were exposed to 1 μm diameter micro-polystyrene (MP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Toxicology & pharmacology 2020-10, Vol.236, p.108801, Article 108801
Hauptverfasser: Song, Jin Ah, Choi, Cheol Young, Park, Heung-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marine microplastic pollution poses a threat to aquatic organisms, including bivalves. In this study, we investigated the accumulation of microplastics and their elicited antioxidant stress response in the bay scallop Argopecten irradians. Scallops were exposed to 1 μm diameter micro-polystyrene (MP) beads at 10, 100, and 1000 beads/mL concentrations for a 7 day period. Bead presence in the digestive diverticula and defense responses in the digestive diverticula and hemolymph were measured at 1, 3, 5, and 7 days. The activity and expression of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and H2O2 in the digestive diverticula and/or hemolymph of scallops increased with microplastic concentration and exposure duration. These results suggest that microplastics can accumulate in the digestive diverticula of A. irradians, and that exposure to microplastics induces oxidative stress in bivalves. It is likely that exposure to high concentrations of micro- or nano-sized plastic particles could potentially have adverse effects in bivalves. [Display omitted] •Effects of ingestion of micro-polystyrene (MP) were assessed in bay scallops•1-μm MP significantly affected oxidative stress indicators in the exposed scallops•Oxidative stress responses increased with MP concentration and exposure time•MP concentration was a significant factor affecting biological processes
ISSN:1532-0456
1878-1659
DOI:10.1016/j.cbpc.2020.108801