SnO2-TiO2 materials for photocatalytic degradation of cationic dye under UV and visible light and a chitosan composite film investigation
The possibility of SnO2 incorporation and immobilization as films forming composites opens new perspectives for TiO2 to profit visible light and to facilitate the photocatalytic process, respectively. In this study, 0 %, 1 % and 10 % wt. of SnO2 was incorporated into TiO2 (SnO2-TiO2) by coprecipitat...
Gespeichert in:
Veröffentlicht in: | Catalysis today 2025-01, Vol.444, p.114995, Article 114995 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The possibility of SnO2 incorporation and immobilization as films forming composites opens new perspectives for TiO2 to profit visible light and to facilitate the photocatalytic process, respectively. In this study, 0 %, 1 % and 10 % wt. of SnO2 was incorporated into TiO2 (SnO2-TiO2) by coprecipitation in a sol-gel method by ammonia addition, followed for calcination at 500 °C. The photocatalysts were characterized by N2 adsorption-desorption, FTIR spectroscopy, XRD Rietveld refinement, TG-DTG, SEM-EDS, DRS and elemental analysis. The performance of all solids was evaluated in the photocatalytic degradation of the cationic dye methylene blue in aqueous phase, under visible and UV irradiation, at 25 °C for 2 h. The results showed that the incorporation of Sn into TiO2 improved the textural properties and decreased the bandgap. All solids presented only TiO2 typical diffractograms, with anatase as the main phase, but catalyst with 10 % SnO2 presented also brookite phase, inferring that Sn atoms were incorporated into TiO2 structure, corroborated by MEV results. All tin-based photocatalysts show high activity under UV and visible light, with the 10 % SnO2 material reaching 83 % and 88 % degradation after 2 h under UV and visible radiation, respectively. This material was tested as an immobilized film, achieving 14 % of decolorization, and the reuse was also evaluated. Our investigation demonstrates that SnO2-TiO2 catalysts could be used to decompose a dye under UV and Visible light as powder in a batch reactor and immobilized as a composite film with chitosan, that opens new perspectives to facilitate the application using solar light.
[Display omitted]
•Light absorption was improved by incorporating 1 % and 10 % SnO2 into TiO2.•SnO2-TiO2 efficiently decomposes methylene blue under UV and visible light.•10 %SnO2-TiO2/chitosan film on glass can decomposes methylene blue.•Immobilization of the composite film photocatalyst aids in easy recovery and reuse. |
---|---|
ISSN: | 0920-5861 |
DOI: | 10.1016/j.cattod.2024.114995 |