Probing non-Faradaic process during elastic deformation in a single sphere of extremely soft mesoporous carbon

Mesoporous carbon materials, known as graphene mesosponges (GMS), exhibit remarkable flexibility. These materials are expected to advance the field of physical chemistry through the investigation of phenomena induced by significant deformation of mesopores when mechanical forces are applied. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2024-09, Vol.228, p.119376, Article 119376
Hauptverfasser: Pirabul, Kritin, Pan, Zheng-Ze, Kanamaru, Kazuya, Horiguchi, Yoshiko, Takahashi, Yasufumi, Kumatani, Akichika, Nishihara, Hirotomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesoporous carbon materials, known as graphene mesosponges (GMS), exhibit remarkable flexibility. These materials are expected to advance the field of physical chemistry through the investigation of phenomena induced by significant deformation of mesopores when mechanical forces are applied. In this work, GMS has been synthesized in the form of spherical microparticles, namely micro-spherical GMS (ms-GMS). The remarkable flexibility of ms-GMS has been validated through mercury intrusion tests, and also by methanol adsorption measurements with and without the application of mechanical force. Moreover, we successfully capture live footage of the elastic deformation of a single ms-GMS particle, enabling the determination of ‘the Poisson's ratio. Furthermore, we are attempting to observe the non-Faradaic process that occurs within a single sphere during mechanical deformation, utilizing scanning electrochemical cell microscopy (SECCM). The results showed a noticeable decline in capacitive rate performance when the pore size decreased from 7 to 2 nm. This approach effectively minimizes interference from other structural variations that typically arise during carbon synthesis and electrode fabrication, offering a new avenue for elucidating the specific influence of pore size in such materials. [Display omitted]
ISSN:0008-6223
DOI:10.1016/j.carbon.2024.119376