Low-temperature decomposable industrial surfactant for stabilization of few-layered graphene in water

Surface-active agents, such as surfactant molecules, are essential for stabilizing liquid-exfoliated graphene and other 2D nanosheets in water through electrostatic or steric repulsion. It is important to note that surfactants are no longer necessary for solutions converted into thin films for elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2024-09, Vol.228, p.119375, Article 119375
Hauptverfasser: Sethurajaperumal, Abimannan, Uppara, Parasu Veera, Varrla, Eswaraiah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface-active agents, such as surfactant molecules, are essential for stabilizing liquid-exfoliated graphene and other 2D nanosheets in water through electrostatic or steric repulsion. It is important to note that surfactants are no longer necessary for solutions converted into thin films for electronic devices, sensors, and composite applications. High-temperature (∼400–500 °C) thermal annealing is one of the performed methods to remove surfactant molecules. However, the surfactant residues present on the graphene nanosheets by post-annealing may adversely impact the electronic properties of the graphene film, potentially resulting in additional doping and defects. To address this challenge, we report a low-temperature decomposable (∼320 °C), eco-friendly and industrially viable surfactant, i.e., coco-glucoside, for the efficient liquid-phase exfoliation and stabilization of graphene nanosheets in water. Compared with the well-studied surfactants in liquid exfoliation such as sodium dodecyl benzene sulphonate (SDBS) and sodium cholate (SC), ∼90 % of this surfactant molecules completely decomposed at ∼320 °C in an air atmosphere for coco-glucoside. Electrical conductivity studies suggested that annealing at 320 °C enhanced the conductivity by 15 times for the coco glucoside-stabilized graphene film; however, marginal change in the conductivity was observed for the SDBS and SC-stabilized graphene film. To demonstrate the viability of the concept, a wallpaper-based rapid fire alarm application utilizing coco glucoside-stabilized graphene/cellulose paper was demonstrated. [Display omitted] •Enhanced ratio of graphite to surfactant 80:1 compared with state of art literature ratios in liquid phase exfoliation.•Low-temperature decomposable surfactant for graphene (320C with 90 % decomposition).•Enhancement in the electrical conductivity of graphene after removing CG surfactant (15 times).•Demonstration of paper-based fire alarm (low-cost and mountable).
ISSN:0008-6223
DOI:10.1016/j.carbon.2024.119375