An MP-Newton method for computing nonlinear eigenpairs and its application for solving a semilinear Schrödinger equation

ln Yao and Zhou (2008), a minimax method for computing nonlinear eigenpairs by calculating critical points of the Lagrange multiplier function is presented. But, the method is slow and can find limited amount of eigenpairs. In this paper, a new general characterization, orthogonal-max characterizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2025-03, Vol.457, p.116315, Article 116315
1. Verfasser: Yao, Xudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ln Yao and Zhou (2008), a minimax method for computing nonlinear eigenpairs by calculating critical points of the Lagrange multiplier function is presented. But, the method is slow and can find limited amount of eigenpairs. In this paper, a new general characterization, orthogonal-max characterization, for critical points of the Lagrange multiplier function is suggested. An MP-Newton method for finding orthogonal-max type critical points is designed through analyzing how the minimax method works. The new method becomes fast and able to calculate more nonlinear eigenpairs. Numerical experiment confirms these two progresses. Also, the MP-Newton method inherits the advantages of the minimax method. A convergence result for the method is established. Finally, an application for solving a semilinear Schrödinger equation is discussed.
ISSN:0377-0427
DOI:10.1016/j.cam.2024.116315