Second order hemivariational inequality driven by evolution differential inclusion to a dynamic thermoviscoelastic contact problem

In this paper we study an abstract system which consists of a hyperbolic hemivariational inequality coupled with a differential evolution inclusion involving a history-dependent operator in Banach spaces. A hybrid iterative system corresponding to the hemivariational inequality is introduced. Combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2024-12, Vol.451, p.116060, Article 116060
Hauptverfasser: Jiao, Jinkai, Liu, Zhenhai, Migórski, Stanislaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study an abstract system which consists of a hyperbolic hemivariational inequality coupled with a differential evolution inclusion involving a history-dependent operator in Banach spaces. A hybrid iterative system corresponding to the hemivariational inequality is introduced. Combining the Rothe method, a feedback iterative technique, and a surjectivity result for pseudomonotone operators, we establish existence and a priori estimate for solutions to an approximate problem. Next, through a limiting procedure for solutions of the hybrid iterative system, we show the existence of a mild solution to the original problem. Finally, we apply the main results to a dynamic contact problem in thermoviscoelasticity.
ISSN:0377-0427
DOI:10.1016/j.cam.2024.116060