A nonlinear finite volume element method preserving the discrete maximum principle for heterogeneous anisotropic diffusion equations

In this paper, we propose a new nonlinear conservative and maximum-principle-preserving finite volume element method for heterogeneous anisotropic diffusion equations on triangular or strictly convex quadrilateral meshes. First, we decompose the numerical flux of the standard finite volume element m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2024-12, Vol.451, p.116023, Article 116023
Hauptverfasser: Wu, Dan, Lv, Junliang, Sheng, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new nonlinear conservative and maximum-principle-preserving finite volume element method for heterogeneous anisotropic diffusion equations on triangular or strictly convex quadrilateral meshes. First, we decompose the numerical flux of the standard finite volume element method on each dual edge into two parts: main part having a two-point-flux structure, and residual part owning a multi-point-flux structure. Then, according to the sign of the residual part and the distribution of the local extremum, the residual part is modified to a two-point-flux structure with a nonlinear term. The resulting nonlinear scheme not only inherits conservation and accuracy of original scheme, but also possesses a maximum-preserving structure without extra restrictions on the meshes and diffusion coefficients. Several numerical experiments verify that our nonlinear scheme has an optimal convergence order and satisfies the discrete maximum principle.
ISSN:0377-0427
DOI:10.1016/j.cam.2024.116023