Application of generalized Haar wavelet technique on simultaneous delay differential equations
In this paper, the Haar wavelet technique is applied to a system of simultaneous linear and nonlinear proportional delay differential equations. By implementing this method, the delay differential equations are transformed into a series of linear and nonlinear algebraic equations, respectively. Thes...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2024-10, Vol.449, p.115977, Article 115977 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the Haar wavelet technique is applied to a system of simultaneous linear and nonlinear proportional delay differential equations. By implementing this method, the delay differential equations are transformed into a series of linear and nonlinear algebraic equations, respectively. These equations are then solved using numerical code constructed in MATLAB. The obtained approximate solutions are compared with exact solutions, demonstrating the accuracy and efficacy of the Haar wavelet method. Using the fixed point theorem, the existence and uniqueness of the solutions is established. The reliability and efficiency of the proposed technique are illustrated through two numerical examples. Additionally, a comprehensive error analysis is presented and the convergence result is discussed, providing a thorough examination of the robustness of the method. This study not only shows that the Haar wavelet technique is a powerful tool for solving delay differential equations but also sets the groundwork for future research in this area. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2024.115977 |