Discontinuous Galerkin methods for the acoustic vibration problem

In two and three dimension we analyze discontinuous Galerkin methods (DG) for the acoustic vibration problem. Through all our study we consider an inviscid fluid, leading to a linear eigenvalue problem. The acoustic problem is written, in first place, in terms of the displacement. Under the approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2024-05, Vol.441, p.115700, Article 115700
Hauptverfasser: Lepe, Felipe, Mora, David, Vellojin, Jesus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In two and three dimension we analyze discontinuous Galerkin methods (DG) for the acoustic vibration problem. Through all our study we consider an inviscid fluid, leading to a linear eigenvalue problem. The acoustic problem is written, in first place, in terms of the displacement. Under the approach of the non-compact operators theory, we prove convergence and error estimates for the method when the displacement formulation is considered. We analyze the influence of the stabilization parameter on the computation of the spectrum, where spurious eigenmodes arise when this parameter is not correctly chosen. Alternatively we present the formulation depending only on the pressure, comparing the performance of the DG methods with the pure displacement formulation. Computationally, we study the influence of the stabilization parameter on the arising of spurious eigenvalues when the spectrum is computed. Also, we report tests in two and three dimensions where convergence rates are reported, together with a comparison between the displacement and pressure formulations for the proposed DG methods.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2023.115700