The barycentric rational predictor-corrector schemes for Volterra integral equations
This paper introduces a family of barycentric rational predictor-corrector schemes based on the Floater–Hormann family of linear barycentric rational interpolants (LBRIs) for the numerical solution of classical systems of second-kind Volterra integral equations. Also, we introduce a family of LBRI-b...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2024-04, Vol.440, p.115611, Article 115611 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a family of barycentric rational predictor-corrector schemes based on the Floater–Hormann family of linear barycentric rational interpolants (LBRIs) for the numerical solution of classical systems of second-kind Volterra integral equations. Also, we introduce a family of LBRI-based predictor-corrector starting procedures that is essentially explicit and whose order of convergence can be as high as that of the main method. Numerical tests verify the theoretical results on the convergence order and stability and illustrate the efficiency and power of the developed family of methods in solving stiff equations. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2023.115611 |