The barycentric rational predictor-corrector schemes for Volterra integral equations

This paper introduces a family of barycentric rational predictor-corrector schemes based on the Floater–Hormann family of linear barycentric rational interpolants (LBRIs) for the numerical solution of classical systems of second-kind Volterra integral equations. Also, we introduce a family of LBRI-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2024-04, Vol.440, p.115611, Article 115611
Hauptverfasser: Abdi, A., Berrut, J.-P., Podhaisky, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a family of barycentric rational predictor-corrector schemes based on the Floater–Hormann family of linear barycentric rational interpolants (LBRIs) for the numerical solution of classical systems of second-kind Volterra integral equations. Also, we introduce a family of LBRI-based predictor-corrector starting procedures that is essentially explicit and whose order of convergence can be as high as that of the main method. Numerical tests verify the theoretical results on the convergence order and stability and illustrate the efficiency and power of the developed family of methods in solving stiff equations.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2023.115611