Spline quasi-interpolation in the Bernstein basis on the Powell–Sabin 6-split of a type-1 triangulation
In this paper, we provide quasi-interpolation schemes defined on a uniform triangulation of type-1 endowed with a Powell–Sabin refinement. In contrast to the usual construction of quasi interpolation splines on the 6-split, the approach described in this work does not require a set of appropriate ba...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2023-05, Vol.424, p.115011, Article 115011 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we provide quasi-interpolation schemes defined on a uniform triangulation of type-1 endowed with a Powell–Sabin refinement. In contrast to the usual construction of quasi interpolation splines on the 6-split, the approach described in this work does not require a set of appropriate basis functions. The approximating splines are directly defined by setting their Bézier ordinates to suitable combinations of the given data values. The resulting quasi-interpolants are C1 continuous and reproduce quadratic polynomials. Some numerical tests are given to confirm the theoretical results. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2022.115011 |