Spline quasi-interpolation in the Bernstein basis on the Powell–Sabin 6-split of a type-1 triangulation

In this paper, we provide quasi-interpolation schemes defined on a uniform triangulation of type-1 endowed with a Powell–Sabin refinement. In contrast to the usual construction of quasi interpolation splines on the 6-split, the approach described in this work does not require a set of appropriate ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2023-05, Vol.424, p.115011, Article 115011
Hauptverfasser: Barrera, D., Eddargani, S., Ibáñez, M.J., Remogna, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we provide quasi-interpolation schemes defined on a uniform triangulation of type-1 endowed with a Powell–Sabin refinement. In contrast to the usual construction of quasi interpolation splines on the 6-split, the approach described in this work does not require a set of appropriate basis functions. The approximating splines are directly defined by setting their Bézier ordinates to suitable combinations of the given data values. The resulting quasi-interpolants are C1 continuous and reproduce quadratic polynomials. Some numerical tests are given to confirm the theoretical results.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.115011