Magnetohydrodynamic eigenfunction classification with a Neural Network

We present a Fourier-decomposition-based approach aided by a Neural Network for the classification of the eigenfunctions of an operator appearing in ideal magnetohydrodynamics. The Neural Network is trained on individual Fourier modes, which enhances the robustness of the classification. In our test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2022-05, Vol.406, p.113889, Article 113889
Hauptverfasser: Kuczyński, M.D., Borchardt, M., Kleiber, R., Könies, A., Nührenberg, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a Fourier-decomposition-based approach aided by a Neural Network for the classification of the eigenfunctions of an operator appearing in ideal magnetohydrodynamics. The Neural Network is trained on individual Fourier modes, which enhances the robustness of the classification. In our tests, the algorithm correctly classified 93.5% of the data and returned the remaining 6.5% for manual classification. The probability of misidentifying the eigenfunctions is estimated as 0.03%. The discussion is kept quite general allowing for potential applications in other fields.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2021.113889