Optimal stochastic Bernstein polynomials in Ditzian–Totik type modulus of smoothness

We introduce a family of symmetric stochastic Bernstein polynomials based on order statistics, and establish the order of convergence in probability in terms of the second order Ditzian–Totik type modulus of smoothness on the interval [0,1], which epitomizes an optimal pointwise error estimate for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2022-04, Vol.404, p.113888, Article 113888
Hauptverfasser: Gao, Qinjiao, Sun, Xingping, Zhang, Shenggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a family of symmetric stochastic Bernstein polynomials based on order statistics, and establish the order of convergence in probability in terms of the second order Ditzian–Totik type modulus of smoothness on the interval [0,1], which epitomizes an optimal pointwise error estimate for the classical Bernstein polynomial approximation. Monte Carlo simulation results (presented at the end of the article) show that this new approximation scheme is efficient and robust.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2021.113888