Method of fundamental solutions for Neumann problems of the modified Helmholtz equation in disk domains

The method of the fundamental solutions (MFS) is used to construct an approximate solution for a partial differential equation in a bounded domain. It is demonstrated by combining the fundamental solutions shifted to the points outside the domain and determining the coefficients of the linear sum to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2022-03, Vol.402, p.113795, Article 113795
Hauptverfasser: Ei, Shin-Ichiro, Ochiai, Hiroyuki, Tanaka, Yoshitaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The method of the fundamental solutions (MFS) is used to construct an approximate solution for a partial differential equation in a bounded domain. It is demonstrated by combining the fundamental solutions shifted to the points outside the domain and determining the coefficients of the linear sum to satisfy the boundary condition on the finite points of the boundary. In this paper, the existence of the approximate solution by the MFS for the Neumann problems of the modified Helmholtz equation in disk domains is rigorously demonstrated. We reveal the sufficient condition of the existence of the approximate solution. Applying the Green formula to the Neumann problem of the modified Helmholtz equation, we bound the error between the approximate solution and exact solution into the difference of the function of the boundary condition and the normal derivative of the approximate solution by boundary integrations. Using this estimate of the error, we show the convergence of the approximate solution by the MFS to the exact solution with exponential order, that is, N2aN order, where a is a positive constant less than one and N is the number of collocation points. Furthermore, it is demonstrated that the error tends to 0 in exponential order in the numerical simulations with increasing number of collocation points N.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2021.113795