Combining Statistical Matching and Propensity Score Adjustment for inference from non-probability surveys

The convenience of online surveys has quickly increased their popularity for data collection. However, this method is often non-probabilistic as they usually rely on selfselection procedures and internet coverage. These problems produce biased samples. In order to mitigate this bias, some methods li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2022-04, Vol.404, p.113414, Article 113414
Hauptverfasser: Castro-Martín, Luis, Rueda, María del Mar, Ferri-García, Ramón
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The convenience of online surveys has quickly increased their popularity for data collection. However, this method is often non-probabilistic as they usually rely on selfselection procedures and internet coverage. These problems produce biased samples. In order to mitigate this bias, some methods like Statistical Matching and Propensity Score Adjustment (PSA) have been proposed. Both of them use a probabilistic reference sample with some covariates in common with the convenience sample. Statistical Matching trains a machine learning model with the convenience sample which is then used to predict the target variable for the reference sample. These predicted values can be used to estimate population values. In PSA, both samples are used to train a model which estimates the propensity to participate in the convenience sample. Weights for the convenience sample are then calculated with those propensities. In this study, we propose methods to combine both techniques. The performance of each proposed method is tested by drawing nonprobability and probability samples from real datasets and using them to estimate population parameters.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2021.113414