On strong convergence of explicit numerical methods for stochastic delay differential equations under non-global Lipschitz conditions

In this paper, we study the convergence of explicit numerical methods in strong sense for stochastic delay differential equations (SDDEs) with super-linear growth coefficients. Under non-globally Lipschitz conditions, a fundamental theorem on convergence has been constructed to elaborate the relatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2021-01, Vol.382, p.113079, Article 113079
Hauptverfasser: Cao, Wanrong, Liang, Jia, Liu, Yufen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the convergence of explicit numerical methods in strong sense for stochastic delay differential equations (SDDEs) with super-linear growth coefficients. Under non-globally Lipschitz conditions, a fundamental theorem on convergence has been constructed to elaborate the relationship of convergence rate between the local truncated error and the global error of one-step explicit methods in the sense of pth moments. A class of balanced Euler schemes has been presented and the boundedness of numerical solutions has been proved. By using the fundamental theorem, we prove that the balanced Euler scheme is of 0.5 order convergence in mean-square sense. Numerical examples verify the theoretical predictions.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2020.113079