ConvEQ: Convolutional neural network for earthquake phase classification using short time frequency transform

We present ConvEQ as a tool for discriminating seismic phases, leveraging artificial intelligence technique (Convolutional Neural Network) for short-time Frequency Transform of the seismic signal. Timely detection of the vertical (P) wave from an earthquake can generate a warning several tens of pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2024-07, Vol.189, p.105624, Article 105624
Hauptverfasser: Khattak, Gul Rukh, Khan, Gul Muhammad, Yousaf, Suhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present ConvEQ as a tool for discriminating seismic phases, leveraging artificial intelligence technique (Convolutional Neural Network) for short-time Frequency Transform of the seismic signal. Timely detection of the vertical (P) wave from an earthquake can generate a warning several tens of precious seconds before the more destructive waves strike. We propose a train-for-each-station approach for an Internet-of-Things-based Smart Earthquake Early Warning System, where lightweight neural networks trained for the seismic data belonging to each station are implemented on edge devices directly interfaced with seismometers. The approach has the potential to get the most from the sparse seismic network for Pakistan and other third-world countries. We train networks for multi-station and single-station data and achieve 96% and 99% accuracy, respectively, proving that train-for-each-station maximizes accuracy. The total processing time (including preprocessing and inference) is about 30ms for each event, thus suitable for real-time deployment. We further compare the performance of ConvEQ on simulated real-time data with several state-of-the-art contemporary algorithms. Our proposed approach demonstrates a robust response on diverse metrics. The ConvEQZ classifies the vertical seismic signal component with high accuracy and the ConvEQX can classify any seismic data component, inculcating robustness against connectivity issues. [Display omitted] •Earthquake phase classification, employing Neural Networks and frequency transform.•Train-for-each-station aimed at low-cost implementation for small seismic networks.•Superior performance on diverse metrics for a simulated real-time stream.•Train-on-any-channel strategy for robustness against data connectivity issues.
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2024.105624