Toeplitz operators on the weighted Bergman spaces of quotient domains
Let G be a finite pseudoreflection group and Ω⊆Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of Ω and Ω/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic prop...
Gespeichert in:
Veröffentlicht in: | Bulletin des sciences mathématiques 2023-11, Vol.188, p.103340, Article 103340 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a finite pseudoreflection group and Ω⊆Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of Ω and Ω/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on Ω/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained. |
---|---|
ISSN: | 0007-4497 1952-4773 |
DOI: | 10.1016/j.bulsci.2023.103340 |