Toeplitz operators on the weighted Bergman spaces of quotient domains

Let G be a finite pseudoreflection group and Ω⊆Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of Ω and Ω/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin des sciences mathématiques 2023-11, Vol.188, p.103340, Article 103340
Hauptverfasser: Ghosh, Gargi, Narayanan, E.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite pseudoreflection group and Ω⊆Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of Ω and Ω/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on Ω/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained.
ISSN:0007-4497
1952-4773
DOI:10.1016/j.bulsci.2023.103340