Stable classes of harmonic mappings

Let H0 denote the set of all sense-preserving harmonic mappings f=h+g‾ in the unit disk D, normalized with h(0)=g(0)=g′(0)=0 and h′(0)=1. In this paper, we mainly investigate some properties of certain subclasses of H0, including inclusion relations and stability analysis by precise examples, coeffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin des sciences mathématiques 2023-05, Vol.184, p.103256, Article 103256
Hauptverfasser: Liu, Gang, Ponnusamy, Saminathan, Starkov, Victor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H0 denote the set of all sense-preserving harmonic mappings f=h+g‾ in the unit disk D, normalized with h(0)=g(0)=g′(0)=0 and h′(0)=1. In this paper, we mainly investigate some properties of certain subclasses of H0, including inclusion relations and stability analysis by precise examples, coefficient bounds, growth, covering and distortion theorems. As applications, we build some Bohr inequalities for these subclasses by means of subordination. Among these subclasses, six classes consist of functions f=h+g‾∈H0 such that h+ϵg is univalent (or convex) in D for each |ϵ|=1 (or for some |ϵ|=1, or for some |ϵ|≤1). Simple analysis shows that if the function f=h+g‾ belongs to a given class from these six classes, then the functions h+ϵg‾ belong to corresponding class for all |ϵ|=1. We call these classes as stable classes.
ISSN:0007-4497
1952-4773
DOI:10.1016/j.bulsci.2023.103256