On the normal sheaf of Gorenstein curves

We show that any tetragonal Gorenstein integral curve is a complete intersection in its respective 3-fold rational normal scroll S, implying that the normal sheaf on C embedded in S, and in Pg−1 as well, is unstable for g≥5, provided that S is smooth. We also compute the degree of the normal sheaf o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin des sciences mathématiques 2022-11, Vol.180, p.103182, Article 103182
Hauptverfasser: Contiero, André, Fontes, Aislan Leal, Teles, Júnio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that any tetragonal Gorenstein integral curve is a complete intersection in its respective 3-fold rational normal scroll S, implying that the normal sheaf on C embedded in S, and in Pg−1 as well, is unstable for g≥5, provided that S is smooth. We also compute the degree of the normal sheaf of any singular reduced curve in terms of the Tjurina and Deligne numbers, providing a semicontinuity of the degree of the normal sheaf over suitable deformations, revisiting classical results of the local theory of analytic germs.
ISSN:0007-4497
1952-4773
DOI:10.1016/j.bulsci.2022.103182