On the normal sheaf of Gorenstein curves
We show that any tetragonal Gorenstein integral curve is a complete intersection in its respective 3-fold rational normal scroll S, implying that the normal sheaf on C embedded in S, and in Pg−1 as well, is unstable for g≥5, provided that S is smooth. We also compute the degree of the normal sheaf o...
Gespeichert in:
Veröffentlicht in: | Bulletin des sciences mathématiques 2022-11, Vol.180, p.103182, Article 103182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that any tetragonal Gorenstein integral curve is a complete intersection in its respective 3-fold rational normal scroll S, implying that the normal sheaf on C embedded in S, and in Pg−1 as well, is unstable for g≥5, provided that S is smooth. We also compute the degree of the normal sheaf of any singular reduced curve in terms of the Tjurina and Deligne numbers, providing a semicontinuity of the degree of the normal sheaf over suitable deformations, revisiting classical results of the local theory of analytic germs. |
---|---|
ISSN: | 0007-4497 1952-4773 |
DOI: | 10.1016/j.bulsci.2022.103182 |