New indenopyrazole linked oxadiazole conjugates as anti-pancreatic cancer agents: Design, synthesis, in silico studies including 3D-QSAR analysis
[Display omitted] To continue the quest of newer anticancer agents, herein a novel class of 1,4-Dihydroindenopyrazole linked oxadiazole conjugates 9(a-r) was designed, synthesized and experimented for their anti-proliferative activities against four different cancer cell lines (human) such as MDA MB...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry letters 2021-07, Vol.44, p.128094, Article 128094 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
To continue the quest of newer anticancer agents, herein a novel class of 1,4-Dihydroindenopyrazole linked oxadiazole conjugates 9(a-r) was designed, synthesized and experimented for their anti-proliferative activities against four different cancer cell lines (human) such as MDA MB-231 (breast), PANC-1 (pancreatic), MCF-7 (breast), and Caco-2 (Colorectal) by using MTT assay. Among the series compound 9h and 9 m demonstrated significant potency against the PANC-1 (human pancreatic cancer cells) with IC50 value 7.4 μM and 4.3 μM respectively. While compound 9 m was found to be equipotent to standard Gomitabine (IC50 = 4.2 μM). The detailed biological assays revealed S phase cell cycle arrest and their ability to propagate apoptosis by activating caspase 3 and 9 enzymes which was confirmed by Annexin-FITC assay and caspase assay. Moreover, docking study suggested their binding modes and interactions with caspase-3. In addition, in silico studies revealed that they exhibit good pharmacokinetics and drug likeliness properties. Furthermore, 3D-QSAR was carried out to achieve a pharmacophoric model with CoMFA (q2 = 0.631, r2 = 0.977) and CoMSIA (q2 = 0.686, r2 = 0.954) on PANC-1 cancer cells which were established, generated and validated to be reliable models for further design and optimization of newer molecules with enhanced anticancer activity. |
---|---|
ISSN: | 0960-894X 1464-3405 |
DOI: | 10.1016/j.bmcl.2021.128094 |