Identification of novel inhibitors for the tyrosyl-DNA-phosphodiesterase 1 (Tdp1) mutant SCAN1 using virtual screening

Chemical structure of the dicoumarine compound 5, the most active against SCAN1 and TDP1 (left). Predicted hydrogen bonding interactions of 5 with His263, Lys265 and Arg493 indicated by dashed green lines (right). [Display omitted] Spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1) is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2020-01, Vol.28 (1), p.115234, Article 115234
Hauptverfasser: Mamontova, E.M., Zakharenko, A.L., Zakharova, O.D., Dyrkheeva, N.S., Volcho, K.P., Reynisson, J., Arabshahi, H.J., Salakhutdinov, N.F., Lavrik, O.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical structure of the dicoumarine compound 5, the most active against SCAN1 and TDP1 (left). Predicted hydrogen bonding interactions of 5 with His263, Lys265 and Arg493 indicated by dashed green lines (right). [Display omitted] Spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1) is a debilitating neurological disease that is caused by the mutation the Tyrosyl-DNA phosphodiesterase 1 (TDP1) DNA repair enzyme. The crucial His493 in TDP1′s binding site is replaced with an arginine amino acid residue rendering the enzyme dysfunctional. A virtual screen was performed against the homology model of SCAN1 and seventeen compounds were identified and tested in a novel SCAN1 specific biochemical assay. Six compounds showed activity with IC50 values between 3.5 and 25.1 µM. The most active ligand 5 (3.5 µM) is a dicoumarin followed by a close structural analogue 6 at 6.0 µM. A less potent series of β-carbolines (14 and 15) was found with potency in the mid-teens. According to molecular modelling an excellent fit for the active ligands into the binding pocket is predicted. To the best of our knowledge, data on inhibitors of the mutant form of TDP1 has not been reported previously. The virtual hits were also tested for wild type TDP1 activity and all six SCAN1 inhibitors are potent for the former, e.g., ligand 5 has a measured IC50 at 99 nM. In the last decade, TDP1 is considered as a promising target for adjuvant therapy against cancer in combination with Topoisomerase 1 poisons. The active ligands are mostly non-toxic to cancer cell lines A-549, T98G and MCF-7 as well as the immortalized WI-38 human fetal lung cells. Furthermore, ligands 5 and 7, show promising synergy in conjunction with topotecan, a clinically used topoisomerase 1 anticancer drug. The active ligands 5, 7, 14 and 15 have a good balance of the physicochemical properties required for oral bioavailability making the excellent candidates for further development.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2019.115234