Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide

In the present work, direct electron transfer (DET) based biosensing system for the determination of glucose has been fabricated by utilizing gold binding peptide (GBP) fused flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Burkholderia cepacia. The GBP fused FAD-GDH was im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2020-10, Vol.165, p.112427-112427, Article 112427
Hauptverfasser: Lee, Hyeryeong, Lee, Yoo Seok, Reginald, Stacy Simai, Baek, Seungwoo, Lee, Eun Mi, Choi, In-Geol, Chang, In Seop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, direct electron transfer (DET) based biosensing system for the determination of glucose has been fabricated by utilizing gold binding peptide (GBP) fused flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Burkholderia cepacia. The GBP fused FAD-GDH was immobilized on the working electrode surface of screen-printed electrode (SPE) which consists of gold working electrode, a silver pseudo-reference electrode and a platinum counter electrode, to develop the biosensing system with compact design and favorable sensing ability. The bioelectrochemical and mechanical properties of GBP fused FAD-GDH (GDH-GBP) immobilized SPE (GDH-GBP/Au) were investigated. Here, the binding affinity of GDH-GBP on Au surface, was highly increased after fusion of gold binding peptide and its uniform monolayer was formed on Au surface. In the cyclic voltammetry (CV), GDH-GBP/Au displayed significantly high oxidative peak currents corresponding to glucose oxidation which is almost c.a. 10-fold enhanced value compared with that from native GDH immobilized SPE (GDH/Au). As well, GDH-GBP/Au has shown 92.37% of current retention after successive potential scans. In the chronoamperometry, its steady-state catalytic current was monitored in various conditions. The dynamic range of GDH-GBP/Au was shown to be 3-30 mM at 30 °C and exhibits high selectivity toward glucose in whole human blood. Additionally, temperature dependency of GDH-GBP/Au on DET capability was also investigated at 30-70 °C. Considering this efficient and stable glucose sensing with simple and easy sensor fabrication, GDH-GBP based sensing platform can provide new insight for future biosensor in research fields that rely on DET. •DET based biosensor was developed using GBP fused FAD-GDH on SPE.•The fusion of GBP increased mechanical and electrical stability of FAD-GDH on SPE.•The GDH-GBP/Au exhibits high selectivity toward glucose in whole human blood.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2020.112427