A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals
In this study, a smartphone-based quantitative dual detection mode device, integrated with gold nanoparticles (GNPs) and time-resolved fluorescence microspheres (TRFMs) lateral flow immunoassays (LFIA) for multiplex mycotoxins in cereals were established. The most frequently used visible light and f...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2020-06, Vol.158, p.112178, Article 112178 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a smartphone-based quantitative dual detection mode device, integrated with gold nanoparticles (GNPs) and time-resolved fluorescence microspheres (TRFMs) lateral flow immunoassays (LFIA) for multiplex mycotoxins in cereals were established. The most frequently used visible light and fluorescence detection modes were integrated in one device. A user-friendly application was self-written to rapidly quantify results. GNPs-LFIA and TRFMs-LFIA were used to detect aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol (DON), T-2 toxin (T-2), and fumonisin B1 (FB1). The visible limits of detection (vLODs) were 10/2.5/1.0/10/0.5, 2.5/0.5/0.5/2.5/0.5 μg/kg for the two methods, respectively. The quantitative limits of detection (qLODs) were 0.59/0.24/0.32/0.9/0.27, 0.42/0.10/0.05/0.75/0.04 μg/kg, respectively. The recoveries of both LFIAs ranged from 84.0%-110.0%. A parallel analysis in 30 naturally contaminated cereal samples was conducted by liquid chromatography–tandem mass spectrometry (LC-MS/MS), the results showed good consistency, indicating the practical reliability of the established methods. The developed two smartphone-based LFIAs provide a promising technique for multiplex, highly sensitive, and on-site detection of mycotoxins.
•GNP and TRFMs-LFIAs were developed to detect co-contamination of 20 mycotoxins from five classes.•A portable reading platform developed based on smartphone App has the advantage of universal data analysis.•Visible light and fluorescence detection modes are integrated in one device. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2020.112178 |