A comprehensive method to select energy sorghum hybrids for bioethanol production
Breeding dedicated energy sorghum [Sorghum bicolor (L.) Moench] hybrids is an effective way to provide high-quality biomass feedstock for bioethanol production. However, there exist very limited energy sorghum cultivars/hybrids suitable for bioethanol production with different bioconversions, which...
Gespeichert in:
Veröffentlicht in: | Biomass & bioenergy 2024-12, Vol.191, p.107436, Article 107436 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breeding dedicated energy sorghum [Sorghum bicolor (L.) Moench] hybrids is an effective way to provide high-quality biomass feedstock for bioethanol production. However, there exist very limited energy sorghum cultivars/hybrids suitable for bioethanol production with different bioconversions, which require a comprehensive evaluation method that can select elite sorghum germplasms effectively. Here, an integrated approach (combing cluster analysis, principal component analysis, and grey relational analysis) was applied to evaluate the bioethanol potential of 96 sorghum hybrids at two locations with distinct environmental conditions in North China based on 10 energy-related traits. Results showed that 96 hybrids present extensive genetic diversity as reflected by a high coefficient of variation of theoretical ethanol yield and chemical components including soluble sugars, cellulose, hemicellulose, lignin, and ash content at two locations. The 96 sorghum hybrids can be consistently sorted into 4 groups targeted for different bioconversions for both locations, namely Cluster Ⅰ (unsuitable sorghum type for bioethanol production), Cluster Ⅱ (ideal sorghum type for bioethanol production), Cluster Ⅲ (sweet sorghum type) and Cluster Ⅳ (biomass sorghum type). Hybrids No. 28 and 30, hybrids No. 64 and 33, and hybrid No. 10 were identified as optimal candidates for ideal sorghum type, sweet sorghum type, and biomass sorghum type for bioethanol production, respectively. Those results highlight that our comprehensive evaluation method can be effective to select elite sorghum hybrids targeted for different bioethanol bioconversions, which can facilitate the breeding process of high-quality energy sorghum hybrids.
[Display omitted]
•A comprehensive method for energy sorghum hybrids selection was established.•The 96 sorghum hybrids were consistently sorted into 4 groups for both locations.•Hybrid No. 28 and 30 were identified as optimal candidates for the ideal sorghum type.•The comprehensive evaluation method can be effective in selecting elite energy sorghum hybrids. |
---|---|
ISSN: | 0961-9534 |
DOI: | 10.1016/j.biombioe.2024.107436 |