A deep decentralized privacy-preservation framework for online social networks

This paper addresses the critical challenge of privacy in Online Social Networks (OSNs), where centralized designs compromise user privacy. We propose a novel privacy-preservation framework that integrates blockchain technology with deep learning to overcome these vulnerabilities. Our methodology em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blockchain: Research and Applications 2024-12, Vol.5 (4), p.100233, Article 100233
Hauptverfasser: Frimpong, Samuel Akwasi, Han, Mu, Effah, Emmanuel Kwame, Adjei, Joseph Kwame, Hanson, Isaac, Brown, Percy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the critical challenge of privacy in Online Social Networks (OSNs), where centralized designs compromise user privacy. We propose a novel privacy-preservation framework that integrates blockchain technology with deep learning to overcome these vulnerabilities. Our methodology employs a two-tier architecture: the first tier uses an elitism-enhanced Particle Swarm Optimization and Gravitational Search Algorithm (ePSOGSA) for optimizing feature selection, while the second tier employs an enhanced Non-symmetric Deep Autoencoder (e-NDAE) for anomaly detection. Additionally, a blockchain network secures users’ data via smart contracts, ensuring robust data protection. When tested on the NSL-KDD dataset, our framework achieves 98.79% accuracy, a 10% false alarm rate, and a 98.99% detection rate, surpassing existing methods. The integration of blockchain and deep learning not only enhances privacy protection in OSNs but also offers a scalable model for other applications requiring robust security measures.
ISSN:2096-7209
DOI:10.1016/j.bcra.2024.100233