A deep decentralized privacy-preservation framework for online social networks
This paper addresses the critical challenge of privacy in Online Social Networks (OSNs), where centralized designs compromise user privacy. We propose a novel privacy-preservation framework that integrates blockchain technology with deep learning to overcome these vulnerabilities. Our methodology em...
Gespeichert in:
Veröffentlicht in: | Blockchain: Research and Applications 2024-12, Vol.5 (4), p.100233, Article 100233 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the critical challenge of privacy in Online Social Networks (OSNs), where centralized designs compromise user privacy. We propose a novel privacy-preservation framework that integrates blockchain technology with deep learning to overcome these vulnerabilities. Our methodology employs a two-tier architecture: the first tier uses an elitism-enhanced Particle Swarm Optimization and Gravitational Search Algorithm (ePSOGSA) for optimizing feature selection, while the second tier employs an enhanced Non-symmetric Deep Autoencoder (e-NDAE) for anomaly detection. Additionally, a blockchain network secures users’ data via smart contracts, ensuring robust data protection. When tested on the NSL-KDD dataset, our framework achieves 98.79% accuracy, a 10% false alarm rate, and a 98.99% detection rate, surpassing existing methods. The integration of blockchain and deep learning not only enhances privacy protection in OSNs but also offers a scalable model for other applications requiring robust security measures. |
---|---|
ISSN: | 2096-7209 |
DOI: | 10.1016/j.bcra.2024.100233 |