Unlocking plant chemical diversity: Exploring epigenetic influences on secondary metabolite production

The term epigenetics originates from the complicated interactions between the genome and surroundings that are included in advancement and differentiation in the life forms. In today's era genetic changes do not restrict to the modifications within the DNA sequence instead how it can be read or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biocatalysis and agricultural biotechnology 2024-12, Vol.62, p.103445, Article 103445
Hauptverfasser: Gupta, Shifali, Sahu, Sanjeev Kumar, Kaur, Paranjeet, Singh, Thakur Gurjeet, Singh, Sovia RJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The term epigenetics originates from the complicated interactions between the genome and surroundings that are included in advancement and differentiation in the life forms. In today's era genetic changes do not restrict to the modifications within the DNA sequence instead how it can be read or sensed by the body itself. As a substitute, epigenetic adjustments or markers, such as DNA methylation and histone modification, modify DNA accessibility and chromatin shape, subsequently controlling styles of quality expression. These methods are important for the day-to-day betterment and differentiation of genetic cells within the grown-up living beings. They may be changed by means of outside impacts and, as such, can contribute to or be an effect of natural alterations inside the phenotype or disease phenotype. Critically, epigenetic programming has an essential role in the direction of reprogramming the pluripotent genes in response to surroundings, which end up inactivated during differentiation. Currently, we review about epigenetic modification in plant secondary metabolites biosynthesis, mechanisms involved, examples of epigenetic modifications in classes of plant secondary metabolites such as terpenoids, phenolic compounds, alkaloids and sulphur containing compounds, epigenetic modification editing and engineering tools and its future perspectives. [Display omitted] •Concept and significance of epigenetic modifications.•Approaches of epigenetic modification for production of secondary metabolites.•Role of epigenetic modifications in biosynthesis of plant secondary metabolites.•Epigenetic modifications factors and tools for plant secondary metabolite production.
ISSN:1878-8181
1878-8181
DOI:10.1016/j.bcab.2024.103445