Phosphorylation-dependent subcellular redistribution of small myosin light chain kinase

Myosin light chain kinase (MLCK) is a Ca2+-calmodulin-dependent enzyme dedicated to phosphorylate and activate myosin II to provide force for various motile processes. In smooth muscle cells and many other cells, small MLCK (S-MLCK) is a major isoform. S-MLCK is an actomyosin-binding protein firmly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular cell research 2021-10, Vol.1868 (11), p.119104, Article 119104
Hauptverfasser: Khapchaev, Asker Y., Watterson, D. Martin, Shirinsky, Vladimir P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myosin light chain kinase (MLCK) is a Ca2+-calmodulin-dependent enzyme dedicated to phosphorylate and activate myosin II to provide force for various motile processes. In smooth muscle cells and many other cells, small MLCK (S-MLCK) is a major isoform. S-MLCK is an actomyosin-binding protein firmly attached to contractile machinery in smooth muscle cells. Still, it can leave this location and contribute to other cellular processes. However, molecular mechanisms for switching the S-MLCK subcellular localization have not been described. Site-directed mutagenesis and in vitro protein phosphorylation were used to study functional roles of discrete in-vivo phosphorylated residues within the S-MLCK actin-binding domain. In vitro co-sedimentation analysis was applied to study the interaction of recombinant S-MLCK actin-binding fragment with filamentous actin. Subcellular distribution of phosphomimicking S-MLCK mutants was studied by fluorescent microscopy and differential cell extraction. Phosphorylation of S-MLCK actin-binding domain at Ser25 and/or Thr56 by proline-directed protein kinases or phosphomimicking these posttranslational modifications alters S-MLCK binding to actin filaments both in vitro and in cells, and induces S-MLCK subcellular translocation with no effect on the enzyme catalytic properties. Phosphorylation of the amino terminal actin-binding domain of S-MLCK renders differential subcellular targeting of the enzyme and may, thereby, contribute to a variety of context-dependent responses of S-MLCK to cellular and tissue stimuli. S-MLCK physiological function can potentially be modulated via phosphorylation of its actin recognition domain, a regulation distinct from the catalytic and calmodulin regulatory domains. •S25/T56 phosphorylation inhibits myosin light chain kinase (MLCK) binding to actin.•Effects of proline-directed S25 and T56 phosphorylation are additive.•S25/T56 control MLCK subcellular targeting but not catalytic activity.•MLCK phosphorylation-mediated targeting may affect local myosin activation in cells.
ISSN:0167-4889
1879-2596
DOI:10.1016/j.bbamcr.2021.119104