Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR
Leucine, isoleucine, and valine are diet derived and essential amino acids that are termed branched-chain amino acids (BCAA). BCAA are widely used as dietary supplements to boost muscle growth and enhance exercise performance. However, the effects of BCAA on myocardial function are largely unknown....
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular basis of disease 2021-01, Vol.1867 (1), p.165980, Article 165980 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leucine, isoleucine, and valine are diet derived and essential amino acids that are termed branched-chain amino acids (BCAA). BCAA are widely used as dietary supplements to boost muscle growth and enhance exercise performance. However, the effects of BCAA on myocardial function are largely unknown. This study was designed to investigate whether BCAA affect heart function and, if so, to further explore the underlying molecular basis for the observed effects.
C57BL/6J mice were randomly divided into two groups, the control group received solvent (water) and the BCAA group received 2% BCAA dissolved in water, for a successive period of 12 weeks. Compared with control, BCAA treatment significantly increased water consumption without changing body weight or diet consumption; heart tissue BCAA levels were increased, markers representative of myocardial injury in heart tissue including c-reactive protein and cardiac muscle troponin were increased ; and creatine kinase, creatine kinase-MB, and lactate dehydrogenase were increased in serum; severe myocardial fibrosis was observed by Masson staining, which was accompanied by increased reactive oxygen species (ROS) production and decreased superoxide dismutase activity in heart tissue; both p-AMPK and p-ULK1 were significantly increased as was autophagy, judged by the presence of LC3 by western blotting and immunofluorescence, increased numbers of autophagosomes were found by transmission electron microscopy in the BCAA group. In vitro, 20 mmol/L BCAA significantly decreased cell viability and increased the production of ROS, as well as the expression of p-AMPK/AMPK and p-ULK1/ULK1 in cultured H9C2 cells. Treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) improved cell viability and reversed ROS changes. Decreased H9C2 cell viability induced with 20 mmol/L BCAA was reversed by either blocking AMPK or inhibition of ULK1. Furthermore, blocking AMPK significantly decreased p-ULK1/ULK1, while inhibition of ULK1 reversed the enhanced expression of LC3-II/LC3-I induced by BCAA. Excessive ROS production and decreased cell viability induced by BCAA were further confirmed in primary cultured murine cardiomyocytes. Pharmacological activation of α7nAChR with PNU-282987 attenuated BCAA-induced injury in primary murine cardiomyocytes. However, this compound failed to suppress BCAA activation of AMPK and autophagy (LC3-II/I ratio).
These results provide the first evidence that treatment of mice with BCAA induced myocardial |
---|---|
ISSN: | 0925-4439 1879-260X |
DOI: | 10.1016/j.bbadis.2020.165980 |