Gradient-based local formulations of the Vickrey–Clarke–Groves mechanism for truthful minimization of social convex objectives

We propose a gradient-based iterative method yielding a truthfulness preserving implementation of the Vickrey–Clarke–Groves mechanism for minimization of social convex objectives. The approach is guaranteed to return, in the limit, the same efficient outcomes of the VCG method, while improving its p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2023-04, Vol.150, p.110870, Article 110870
Hauptverfasser: Angeli, David, Manfredi, Sabato
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a gradient-based iterative method yielding a truthfulness preserving implementation of the Vickrey–Clarke–Groves mechanism for minimization of social convex objectives. The approach is guaranteed to return, in the limit, the same efficient outcomes of the VCG method, while improving its privacy limitations and reducing its communication requirements. Its performance is investigated through an illustrative example of vehicles coordination.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2023.110870