Nonparametric identification of Kronecker networks
We address the problem to estimate a dynamic network whose edges describe Granger causality relations and whose topology has a Kronecker structure. Such a structure arises in many real networks and allows to understand the organization of complex networks. We propose a kernel-based PEM method to lea...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2022-11, Vol.145, p.110518, Article 110518 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the problem to estimate a dynamic network whose edges describe Granger causality relations and whose topology has a Kronecker structure. Such a structure arises in many real networks and allows to understand the organization of complex networks. We propose a kernel-based PEM method to learn such networks. Numerical examples show the effectiveness of the proposed method. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2022.110518 |