Nonparametric identification of Kronecker networks

We address the problem to estimate a dynamic network whose edges describe Granger causality relations and whose topology has a Kronecker structure. Such a structure arises in many real networks and allows to understand the organization of complex networks. We propose a kernel-based PEM method to lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2022-11, Vol.145, p.110518, Article 110518
1. Verfasser: Zorzi, Mattia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem to estimate a dynamic network whose edges describe Granger causality relations and whose topology has a Kronecker structure. Such a structure arises in many real networks and allows to understand the organization of complex networks. We propose a kernel-based PEM method to learn such networks. Numerical examples show the effectiveness of the proposed method.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2022.110518