Robust tube-based model predictive control with Koopman operators

Koopman operators are of infinite dimension and capture the characteristics of nonlinear dynamics in a lifted global linear manner. The finite data-driven approximation of Koopman operators results in a class of linear predictors, useful for formulating linear model predictive control (MPC) of nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2022-03, Vol.137, p.110114, Article 110114
Hauptverfasser: Zhang, Xinglong, Pan, Wei, Scattolini, Riccardo, Yu, Shuyou, Xu, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Koopman operators are of infinite dimension and capture the characteristics of nonlinear dynamics in a lifted global linear manner. The finite data-driven approximation of Koopman operators results in a class of linear predictors, useful for formulating linear model predictive control (MPC) of nonlinear dynamical systems with reduced computational complexity. However, the robustness of the closed-loop Koopman MPC under modeling approximation errors and possible exogenous disturbances is still a crucial issue to be resolved. Aiming at the above problem, this paper presents a robust tube-based MPC solution with Koopman operators, i.e., r-KMPC, for nonlinear discrete-time dynamical systems with additive disturbances. The proposed controller is composed of a nominal MPC using a lifted Koopman model and an off-line nonlinear feedback policy. The proposed approach does not assume the convergence of the approximated Koopman operator, which allows using a Koopman model with a limited order for controller design. Fundamental properties, e.g., stabilizability, observability, of the Koopman model are derived under standard assumptions with which, the closed-loop robustness and nominal point-wise convergence are proven. Simulated examples are illustrated to verify the effectiveness of the proposed approach.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2021.110114