Maximum Likelihood estimation for non-minimum-phase noise transfer function with Gaussian mixture noise distribution
In this paper a Maximum Likelihood estimation algorithm for a linear dynamic system driven by an exogenous input signal, with non-minimum-phase noise transfer function and a Gaussian mixture noise is developed. We propose a flexible identification technique to estimate the system model parameters an...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2022-01, Vol.135, p.109937, Article 109937 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a Maximum Likelihood estimation algorithm for a linear dynamic system driven by an exogenous input signal, with non-minimum-phase noise transfer function and a Gaussian mixture noise is developed. We propose a flexible identification technique to estimate the system model parameters and the Gaussian mixture parameters based on the Expectation–Maximization algorithm. The benefits of our proposal are illustrated via numerical simulations. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2021.109937 |