Optimal control of port-Hamiltonian systems: A continuous-time learning approach

In this paper, we propose a continuous-time adaptive feedback controller for the optimal control of input-state-output port-Hamiltonian systems with respect to general Lagrangian performance indices. The proposed control law implements an online learning procedure which uses the Hamiltonian of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2021-08, Vol.130, p.109725, Article 109725
Hauptverfasser: Kölsch, Lukas, Jané Soneira, Pol, Strehle, Felix, Hohmann, Sören
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a continuous-time adaptive feedback controller for the optimal control of input-state-output port-Hamiltonian systems with respect to general Lagrangian performance indices. The proposed control law implements an online learning procedure which uses the Hamiltonian of the system as an initial value function candidate. The continuous-time learning of the value function is achieved by means of a certain Lagrange multiplier that allows to evaluate the optimality of the current solution. In particular, constructive conditions for stabilizing initial value function candidates are stated and asymptotic stability of the closed-loop equilibrium is proven. Simulations of an exemplary nonlinear optimal control problem demonstrate the performance of the controller resulting from the proposed online learning procedure.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2021.109725