Almost Lyapunov functions for nonlinear systems

We study convergence of nonlinear systems in the presence of an “almost Lyapunov” function which, unlike the classical Lyapunov function, is allowed to be nondecreasing – and even increasing – on a nontrivial subset of the phase space. Under the assumption that the vector field is free of singular p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2020-03, Vol.113, p.108758, Article 108758
Hauptverfasser: Liu, Shenyu, Liberzon, Daniel, Zharnitsky, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study convergence of nonlinear systems in the presence of an “almost Lyapunov” function which, unlike the classical Lyapunov function, is allowed to be nondecreasing – and even increasing – on a nontrivial subset of the phase space. Under the assumption that the vector field is free of singular points (away from the origin) and that the subset where the Lyapunov function does not decrease is sufficiently small, we prove that solutions approach a small neighborhood of the origin. A nontrivial example where this theorem applies is constructed.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2019.108758