Observability of Boolean networks via matrix equations

From the new perspective of logical matrix equations, observability of Boolean networks (BNs) is investigated in this paper. First, it is shown that one BN is locally observable on the set of reachable states if and only if the constructed matrix equations have a unique canonical solution. Then, com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2020-01, Vol.111, p.108621, Article 108621
Hauptverfasser: Yu, Yongyuan, Meng, Min, Feng, Jun-e
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:From the new perspective of logical matrix equations, observability of Boolean networks (BNs) is investigated in this paper. First, it is shown that one BN is locally observable on the set of reachable states if and only if the constructed matrix equations have a unique canonical solution. Then, combining with an equivalence relation, a novel condition is established to verify global observability. Finally, an example is worked out to illustrate the obtained results.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2019.108621