How much urban air quality is affected by local emissions: A unique case study from a megacity in the Pearl River Delta, China

In March 2022, the resurgence of COVID-19 cases in Shenzhen, a megacity in the Pearl River Delta (PRD) region of China, led to unusual restrictions on anthropogenic activities within a single city, in contrast to the restrictions COVID-19 caused on a national scale at the beginning of 2020. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2023-04, Vol.299, p.119666, Article 119666
Hauptverfasser: Tang, Meng-Xue, Huang, Xiao-Feng, Yao, Pei-Ting, Wang, Run-Hua, Li, Zhi-Jie, Liang, Chao-Xi, Peng, Xing, Cao, Li-Ming, Du, Ke, Yu, Kuangyou, Guo, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In March 2022, the resurgence of COVID-19 cases in Shenzhen, a megacity in the Pearl River Delta (PRD) region of China, led to unusual restrictions on anthropogenic activities within a single city, in contrast to the restrictions COVID-19 caused on a national scale at the beginning of 2020. In this unique event, we found that only under unfavorable meteorological conditions did substantial urban local emission reductions have an impact on air pollutant changes (−42.4%–6.6%), whereas the deweathered changes were very small (−8.3%–3.4%) under favorable meteorological conditions. Primary anthropogenic pollutants, such as NO2, toluene, BC, and primary organic aerosol (POA), responded most considerably to emission reductions from early morning to noon during unfavorable meteorological days; for secondary organic aerosol (SOA), regulating the daytime total oxidant (Ox = O3 + NO2) was found to be more effective than controlling its precursors within the city scale, whereas secondary nitrate displayed the opposite trend. Since Ox changed little during the urban lockdown despite the remarkable decrease in precursors, it is emphasized that regionally coordinated control of VOCs and NOx is necessary to effectively reduce Ox levels. In addition, Shenzhen's NOx emission reduction efforts should be sustained in order to control PM2.5 and O3 pollution synergistically for long-term attainment. [Display omitted] •Reductions in urban emissions had a remarkable impact only under unfavorable meteorology.•Primary pollutants responded to the urban lockdown considerably from morning to midday.•Reducing Ox at the regional scale is required to effectively mitigate urban SOA.•Continuous effort on NOx emission control is suggested for Shenzhen in the future.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2023.119666