Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach
PM2.5 poses a serious threat to public health, however its spatial concentrations are not well characterized due to the sparseness of regulatory air quality monitoring (AQM) stations. This motivates novel low-cost methods to estimate ground-level PM2.5 at a fine spatial resolution so that PM2.5 expo...
Gespeichert in:
Veröffentlicht in: | Atmospheric environment (1994) 2020-06, Vol.230, p.117451, Article 117451 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PM2.5 poses a serious threat to public health, however its spatial concentrations are not well characterized due to the sparseness of regulatory air quality monitoring (AQM) stations. This motivates novel low-cost methods to estimate ground-level PM2.5 at a fine spatial resolution so that PM2.5 exposure in epidemiological research can be better quantified. Satellite-retrieved aerosol products are widely used to estimate the spatial distribution of ground-level PM2.5. However, these aerosol products can be subject to large uncertainties due to many approximations and assumptions made in multiple stages of their retrieval algorithms. Therefore, estimating ground-level PM2.5 directly from satellites (e.g. satellite images) by skipping the intermediate step of aerosol retrieval can potentially yield lower errors because it avoids retrieval error propagating into PM2.5 estimation and is desirable compared to current ground-level PM2.5 retrieval methods. Additionally, the spatial resolutions of estimated PM2.5 are usually constrained by those of the aerosol products and are currently largely at a comparatively coarse 1 km or greater resolution. Such coarse spatial resolutions are unable to support scientific studies that thrive on highly spatially-resolved PM2.5. These limitations have motivated us to devise a computer vision algorithm for estimating ground-level PM2.5 at a high spatiotemporal resolution by directly processing the global-coverage, daily, near real-time updated, 3 m/pixel resolution, three-band micro-satellite imagery of spatial coverages significantly smaller than 1 × 1 km (e.g., 200 × 200 m) available from Planet Labs. In this study, we employ a deep convolutional neural network (CNN) to process the imagery by extracting image features that characterize the day-to-day dynamic changes in the built environment and more importantly the image colors related to aerosol loading, and a random forest (RF) regressor to estimate PM2.5 based on the extracted image features along with meteorological conditions. We conducted the experiment on 35 AQM stations in Beijing over a period of ~3 years from 2017 to 2019. We trained our CNN-RF model on 10,400 available daily images of the AQM stations labeled with the corresponding ground-truth PM2.5 and evaluated the model performance on 2622 holdout images. Our model estimates ground-level PM2.5 accurately at a 200 m spatial resolution with a mean absolute error (MAE) as low as 10.1 μg m−3 (equivalent to 23.7% err |
---|---|
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/j.atmosenv.2020.117451 |