A shape sensing methodology for beams with generic cross-sections: Application to airfoil beams
This work presents a shape sensing method capable of handling some geometrical complexities commonly observed in aerospace structures. The method presented is based on the one-dimensional inverse Finite Element Method (1D-iFEM), which is capable of accurately reconstructing structural displacements...
Gespeichert in:
Veröffentlicht in: | Aerospace science and technology 2021-03, Vol.110, p.106484, Article 106484 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a shape sensing method capable of handling some geometrical complexities commonly observed in aerospace structures. The method presented is based on the one-dimensional inverse Finite Element Method (1D-iFEM), which is capable of accurately reconstructing structural displacements of beam structures using surface strain measurements. The effects of cross-sectional variation in shear strains due to transverse or torsional loads for any general beam profile is accounted for in this 1D-iFEM formulation. The introduction of these effects allows the use of iFEM for the shape sensing of solid or thin-walled prismatic beams with any general beam profile. The performance of the new method is demonstrated through some example problems of prismatic beams under various static loading scenarios. |
---|---|
ISSN: | 1270-9638 1626-3219 |
DOI: | 10.1016/j.ast.2020.106484 |