An efficient approach based on a novel 1D-LBP for the detection of bearing failures with a hybrid deep learning method
Bearings serve as fundamental components in the transmission of motion for rotating machinery. The occurrence of mechanical wear and subsequent bearing failures within these rotating systems can lead to diminished operational efficiency and, if left unaddressed, may result in the complete cessation...
Gespeichert in:
Veröffentlicht in: | Applied soft computing 2024-04, Vol.155, p.111438, Article 111438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bearings serve as fundamental components in the transmission of motion for rotating machinery. The occurrence of mechanical wear and subsequent bearing failures within these rotating systems can lead to diminished operational efficiency and, if left unaddressed, may result in the complete cessation of the system's function. Hence, there exists a critical need for effective monitoring methodologies aimed at accurately detecting faults in such systems, preferably in their nascent stages. This study presents a novel approach to fault diagnosis leveraging vibration data obtained from bearings. Initially, a feature extraction technique is devised, which incorporates localized signal variations. Subsequently, these features, extracted via MM-1D-LBP, are utilized in conjunction with a hybrid deep learning network based on Long Short-Term Memory (LSTM) and one-dimensional Convolutional Neural Network (1D-CNN) architectures for diagnostic purposes. To assess the efficacy of the proposed methodology, experiments were conducted on two distinct datasets acquired from real-world bearing assemblies. In the first dataset, the aim was to predict various failure types (Inner Ring, Outer Ring, Ball). In the second dataset, the objective was to estimate defect sizes using bearing vibration signals corresponding to defects of different dimensions (0.15 cm, 0.5 cm, 0.9 cm) under consistent operating conditions. Remarkably high success rates of 99.31 % and 99.65 % were achieved for the two datasets, respectively, thus underscoring the efficacy of the proposed MM-1D-LBP+1D-CNN-LSTM approach. These findings not only demonstrate the feasibility of the proposed method for fault diagnosis in bearing systems but also suggest its potential applicability across diverse signal categories. Ultimately, this research contributes to advancing the state-of-the-art in fault diagnosis methodologies for rotating machinery, offering enhanced accuracy and early detection capabilities.
•A novel approach based on MM-1D-LBP+1D-CNN-LSTM is proposed to classify bearing faults.•The proposed scheme was carried out using vibration signals.•One advantage is that this scheme uses all data points for feature extraction.•High accuracies achieved for bearing fault classification.•Original data is used for this study. |
---|---|
ISSN: | 1568-4946 1872-9681 |
DOI: | 10.1016/j.asoc.2024.111438 |