Spectral acceleration prediction using genetic programming based approaches
Evolutionary computation (EC) is a widely used computational intelligence that facilitates the formulation of a range of complex engineering problems. This study tackled two hybrid EC techniques based on genetic programming (GP) for ground motion prediction equations (GMPEs). The first method couple...
Gespeichert in:
Veröffentlicht in: | Applied soft computing 2021-07, Vol.106, p.107326, Article 107326 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evolutionary computation (EC) is a widely used computational intelligence that facilitates the formulation of a range of complex engineering problems. This study tackled two hybrid EC techniques based on genetic programming (GP) for ground motion prediction equations (GMPEs). The first method coupled regression analysis with multi-objective genetic programming. In this way, the strategy was maximizing the accuracy and minimizing the models’ complexity simultaneously. The second approach incorporated mesh adaptive direct search (MADS) into gene expression programming to optimize the obtained coefficients. A big data set provided by the Pacific Earthquake Engineering Research Centre (PEER) was used for the model development. Two explicit formulations were developed during this effort. In those formulae, we correlated spectral acceleration to a set of seismological parameters, including the period of vibration, magnitude, the closest distance to the fault ruptured area, shear wave velocity averaged over the top 30 meters, and style of faulting. The GP-based models are verified by a comprehensive comparison with the most well-known methods for GMPEs. The results show that the proposed models are quite simple and straightforward. The high degrees of accuracy of the predictions are competitive with the NGA complex models. Correlations of the predicted data using GEP-MADs and MOGP-R models with the real observations seem to be better than those available in the literature. Three statistical measures for GMPEs, such as E (%), LLH, and EDR index, confirmed those observations.
•Evolutionary Computation was applied to ground-motion prediction equations.•Two hybrid approaches were utilized to develop explicit formula.•First, a regression analysis combined with multi-objective genetic programming.•Second, an adaptive direct search hybridized with gene expression programming.•The data provided by Pacific Earthquake Engineering Research Centre was utilized. |
---|---|
ISSN: | 1568-4946 1872-9681 |
DOI: | 10.1016/j.asoc.2021.107326 |